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SOME ASPECTS OF ESSENTIALLY NONOSCILLATORY

(ENO) FORMULATIONS FOR THE EULER EQUATIONS

ABSTRACT

f

r_r

This report describes an essentially nonoscillatory (ENO) formulation for hyperbolic

systems of conservation laws. ENO approaches are based on "smart interpolation" to avoid

spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing

(TVD) schemes. In the recent past, TVD formulations were used to construct shock-

capturing finite-difference methods. At extremum points of the solution, TVD schemes

automatically reduce to being first-order accurate discretizations locally while away from

extrema, they can be constructed to be of higher-order accuracy. This local effect, which

is necessary to prevent the Total Variation from increasing, restricts the maximum global

accuracy possible for TVD schemes to third order for steady-state solutions and second

order for unsteady computations. The new framework helps construct essentially non-

oscillatory finite-difference methods without recourse to local reductions of accuracy to first

order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of

the new approach can be specialized in several ways and this report describes one specific

implementation based on a) the integral form of the conservation laws, b) reconstruction

based on the primitive function, c) extension to multiple dimensions in a tensor product

fashion, d) Runge-Kutta time integration. The resulting method is fourth-order accurate

in time and space, and is applicable to uniform Cartesian grids. The construction of such

schemes for scalar equations and systems in one and two space dimensions is described

along with several examples which illustrate interesting aspects of the new approach.
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Section 1.0

INTRODUCTION

Rockwell International's Science Center, under contract with NASA Langley Research

Center (LaRC), has been developing very powerful numerical methods for the Euler equa-

tions. The research began with the development of upwind schemes of first-order accuracy

based on the Osher scheme and progressed to higher-order TVD schemes encompassing a

variety of upwind formulations including Osher's and Roe's approximate Riemann Solvers

(Refs. 1-2). Eventually, LaRC-sponsored research also included certain aspects of ENO

schemes which are described here within the overall context of a general framework.
2

The earlier algorithmic research on TVD schemes culminated in the development of

the EMTAC (Euler Marching Scheme for Accurate Computations) code for steady invis-

cid supersonic flows including subsonic pocket treatment (Ref. 3). The EMTAC code was

delivered to NASA Langley Research Center in 1987. Rockwell International also devel-

oped a multi-zone capability that was built into the EMTAC-MZ code which was initially

Rockwell proprietary (Ref. 4). As part of an extension to the original contract with NASA

Langley Research Center, Rockwell agreed to make EMTAC-MZ available to NASA for

their use and dissemination. The EMTAC-MZ code and its usage are separately described

in a user manual (Ref. 5).

This report introduces the general framework in which a new approach has been

developed for constructing shock-capturing schemes of arbitrarily high orders of accuracy.

The report also presents details of one specific implementation that results in a fourth-

order accurate method. The new approach is based on ENO interpolation techniques,

where ENO is an acronym for "Essentially Nonosclllatory .

Until higher-order ENO schemes were developed, TVD formulations were at the fore-

front of shock-capturing methods available to the Computational Fluid Dynamics (CFD)

community. In recent years, many finite-difference methods have been developed using

TVD formulations along with Riemann Solvers 5-9. These methods manifest many prop-

erties desirable in numerical solution procedures. By design, they avoid numerical oscil-

lations and "expansion shocks", while at the same time being higher-order (more than

first-order) accurate. ("Expansion shocks" are shock waves which do not satisfy the en-

tropy inequality). TVD formulations are also based on the principle of discrete or numerical

conservation which is the numerical analog of physical conservation of mass, momentum,

and energy. This results in TVD schemes being able to "capture" discontinuities with ease
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and high resolution. The conservationproperty, the avoidanceof numerical oscillationsand

"expansionshocks", the adherenceto signal propagation principles (through the Riemann

Solver), and the achievementof higher accuracyenableTVD formulations to closelyfollow
the physical principles built into the mathematical framework of the governing hyperbolic

systemsof conservationlaws.

While TVD formulations arevery reliable, versatile, and quite accurate, they do have

certain inherent accuracy limitations. At extremum points of the solution, TVD schemes

automatically reduceto being first-order accurate discretizations locally while awayfrom

extrema, they canbe constructed to beof higher-orderaccuracy.This local effect,which is
necessaryto prevent the Total Variation from increasing,restricts the maximum global ac-

curacypossiblefor TVD schemesto third order for steady-statesolutions and secondorder

for unsteady computations. These inherent limits were the motivating factor behind the

developmentof ENO schemeswhich canachievearbitrarily high orders of accuracywhile,

at the sametime, essentiallyavoiding numerical oscillations. TVD schemesrestricted the

total variation from increasing. Higher-order ENO schemesdepart from this by permitting

the variation to possibly increasebut in a boundedfashion. The ENO framework therefore

includes TVD schemesas a subsetand provides a natural unification of designprinciples

for the construction of good shock-capturingnumerical methods. Uniformly accurateENO
schemeswereintroduced by Harten and further developedby his colleaguesin Refs. 10-13.

The ENO formulation canbe usedto possiblyobtain greater computational efficiency

(sameaccuracy with fewernumbersof grid points and lesswork), greater resolution (more

accuracy for a given number of meshpoints), and in general to greatly extend the bound-
aries of what is achievableutilizing CFD methods. Greater accuracy, in itself, is not

necessarily difficult to obtain. For fluid flow problems exhibiting a sufficient degreeof

smoothness,finite-difference schemesof any desirableorder of accuracy (provided that a

sufficient number of grid points areavailableto realize this) canbeconstructed usingeither

Taylor seriesmethods or spectral methods. The real difficulty arisesin constructing very

highly accurate schemesto capture shockwavesand to resolvenon-smoothhigh-gradient

regions. ENO schemesprovide an eminent solution to this problem.

In this report weconsiderENO schemeswhich arebasedon piecewisepolynomial in-

terpolation. We alsoassumethat thesemethods usea Riemann Solverat eachcell interface
to construct the numericalflux basedon the left and right statesof the dependentvariables

at the cell interface. Other approachesare possible but not consideredhere. Assuming

that an exact or a "good" approximate Riemann Solver is used, it is the construction of
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the left and right states that endows the ENO formulation with its desirable properties.

For every time step, the left and right states are constructed using piecewise polynomial

interpolation of discrete data related to the approximate cell averages of the dependent

variables.

The discussion begins with an introduction to. hyperbolic systems of conservation

laws followed by a presentation of the integral form on which shock-capturing numerical

methods may be constructed. In such approaches, interpolation plays a direct role and

"smart interpolation" helps avoid spurious numerical oscillations while also achieving high

accuracy. In approaches based on the integral form, the cell-average values of the dependent

variables are updated from one time level to the next. Piecewise polynomial pointwise

behavior of the dependent variables is reconstructed from these celi avarages. Out of many

possible reconstruction techniques, one based on the "primitive function" approach (RP)

is explained for both one and two dimensions. Implementation details including high order

quadrature formulae for integration of flux along cell boundaries, time-stepping method,

and extension to systems of equations are all covered followed by detailed presentation of

several one and two dimensional examples.
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Section 2.0

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

In this report, we study the use of ENO uniformly high-order accurate schemes for

the numerical approximation of weak solutions of hyperbolic systems of conservation laws.

In one spatial dimension, such systems may be written as

qt + f(q)x = 0. (2.1)

Here, q = (ql,'", qm) T is a state vector and f(q), the flux, is a vector valued function of

m components. The system is hyperbolic in the sense that the m x m Jacobian matrix

A(q) =Of/Oq

has m real eigenvalues

al(q) <_ a2(q) <_'" <_ am(q)

and a complete set of m linearly independent (right-) eigenvectors.

For multiple spatial dimensions, the system of equations rhay be written as

q, + V. _F = 0 (2.2)

where V is the gradient operator

= N+JN + Oz (2.3)

and

ff = fl_ + f2._ -t- f3k (2.4)

If we define the Jacobians Ai = Ofi/Oq, the system (2.2) may be considered hyperbolic if

the coefficient matrix

A = _ ,Xi Ai
i

has m real eigenvalues and a complete set of m linearly independent (right-) eigenvectors

for any real choices of constants ,_i.
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In particular, wewill be consideringthe linear waveequation and the Euler equations

of fluid dynamics in 1 and 2 spacedimensions.

Scalarwaveequation in l-d:

'ut + a u_: = 0 (2.5)

Scalar wave equation in 2-d:

with

Euler equations in l-d:

ut + au_ + buy = 0 (2.6)

Oq Of_
0-7 + Ox - O, (2.7a)

= pu . (2.7/))
q=pPu'f'_pu2+p

Euler equations in 2-d:

with

Oq Ofl Of 2

O--t+ -_x + Oy --O, (2.8@

= pv (2.Sb)
q= pu ,fl = pu 2 + p ' puv "

pv / pvu pv 2 + p /

In the Euler equations above, p is pressure, p is density, and the Cartesian velocity

components are u and v in the x and y directions, respectively. The total energy per unit

volume, e, is given by e = P/(7 - 1) + p(u 2 + v_)/2 where 3' is the ratio of specific heats

assuming "perfect gas".

It is desirablethat numerical methods devised to solve the above equations a) provide

the desirable order of accuracy, b) mimic the signal propagation properties of hyperbolic

systems and c) permit weak solutions (piecewise continuous) to be obtained.

"qt
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Section 3.0

INTEGRAL FORM FOR CONSERVATION LAWS

Methods based on the integral form of the system of conservation laws can satisfy" the

three goals just outlined. We can derive the integral form by starting from the conservation

laws described in their differential form in the previous section. For example, beginning

with Eq. (2.1) and integrating with respect to x and i, we obtaie.

ft L (qt + f(q)x) dx dt = 0 (3.1)

L (jqtdt) dx + ft (L fxdx) dt=O (3.2)

_-n (3.3)(_+1-_)Ax +(fj+a/2 - J_-,/2) At = 0

where t', t,+l and xj+l/2, xj-1/2 define the limits of integration,

1 f zi+il2
q dx (3.4a)

is the cell average of the dependent variables and

_tn+l

f j±l/2 - At , f dt
(3.4b)

is the average flux along cell boundaries over an interval of time.

Eq. (3.3) is the fully discrete integral form of the 1-d system of conservation laws

presented as Eq. (2.1) and can also be written as

47+1 =n #n-- qj f_+112+ =0. (3.5)
At Ax

Even though Eq. (3.5) resembles a finite-difference formula, it must be noted that it is

an exact relation that must be satisfied by any exact solution of the differential equations.

The integral form of the equations does not demand the existence of derivatives but only

weaker conditions of integrability and solutions of Eq. (3.5) can also therefore include

"weak solutions."
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The semi-discreteversion of Eq. (3.5) can be written as

Oq /j-t-1/2 -- /j--1/2 = 0 (3.6)
O--[+ Ax

and can either be obtained by integrating Eq. (2.1) only with respect to x or by taking

the limit At _ 0 in Eq. (3.5). In Eq. (3.6), fj+l/2 is the flux at cell boundary xj+a/2.

The corresponding semi-discrete and fully-discrete integral forms of the multidimen-

sional system of conservation laws (2.2) can also be easily obtained. For example, inte-

grating Eq. (2.2) with respect to the spatial coordinates, we obtain

v(qt + V. ff')dV = 0 (3.7)

where V denotes the volume of the multidimensional conservation cell under consideration.

Eq. (3.7) reduces to

N qav+ P aas=o (3.8)

where S denotes the surface that encloses the conservation cell and h is the unit normal at

any point of the surface. We will see later how the boundary integration can be approx-

imated by numerical quadrature in the context of numerical methods to solve Eq. (3.8).

We now further reduce Eq. (3.8) to

0 /,O----_(_tV)+ F . fi dS = 0 (3.9)

where the cell average _ is defined in the usual way for a multidimensional formulation.

We have already seen that a) no derivatives appear in the fully discrete integral form

and b) no spatial derivatives appear in the semi-discrete form. We observe additionally

that: c) the dependent variables in the integral form are the cell averages of the original

dependent variables of the differential form of the equations; d) while we will develop

numerical methods directly for the integral forms, methods can also be developed directly

frOmthe-differentlal form in a fashion that wouldst{ll ensure that weak solutions can be

computed (by obeying principles of discrete conservation),

8



Section 4.0

NUMERICAL METHODS BASED ON THE INTEGRAL FORM

We observed in the last. section that Eq. (3.3) resembled a finite-difference formula

that may be used to advance the cell averages _] from one time level to the next if the cell

boundary (face) values of the fluxes can be defined. Eq. (3.9) for the multidimensional

equations is similar. The key is being able to obtain the cell face values of the flux from

known values of _]. This may be accomplished using piecewise polynomial interpolaqon.

Consider the initial value problem for Eq. (3.3) defined by adding to that equation
_--0

the initial conditions qj ,j = 1,..., .1. Then, a numerical algorithm to solve Eq. (3.3) may

be defined as follows:

a) Interpolate _j to obtain piecewise polynomial pointwise behavior of q within each cell.

b) Each polynomial (within each cell) may be evaluated at xj+l/2 for that cell. Col-

lecting all such values, we find that we have, at each cell face, left and right values

(qL, qR)j+l/2.

C) Resolve the discontinuity at each cell face using solutions to the Riemann problem.

(The solution procedure is usually referred to as the Riemann Solver.) This will result
^

in a knowledge of fj+l/2 which we shall henceforth call the numerical flux.

d) Substitute ]j+1/2 into Eq. (3.3) to advance the solution to the next time level. Proceed

to step (a) and repeat.

Notes:

1) In step (a), we must construct piecewise polynomials that match the given cell aver-

ages. This is different from the usual interpolation of discrete pointwise values. There

are at least three different ways of performing such interpolation in order to recon-

struct the pointwise behavior of the original dependent variables in each cell -- i)

reconstruction by deconvolution (RD), ii) reconstruction using the primitive function

formulation (RP), and iii) reconstruction by matching cell averages directly (RM).

The second method, RP, will be explained in this report.

2) One may wonder why piecewise polynomials should be used, especially when one sees

in step (b) that this will lead to discontinous behavior at cell interfaces. In fact, the

choice of piecewise polynomials is particularly apt for just that reason. After all, we

9



3)

4)

must allow our interpolation model to permit d{scontinuities since our goal is to be able

to comp_l-te "weak;' solutions, it is-true, however, that witt_ piecewise polynomials of

the type described in this report, the approximation always pushes any discontinuity

to be at the cell interfaces. Further refinements have already been devised to enable

discontinuities to be located even within the cell ("subcell resolution" -- Ref. 14) but

it is beyond the scope of this report to delve into such advances.

When dealing with systems of equations, questions arise regarding the choice of vari-

ables to interpolate: should the reconstruction techniques be based on matching the

basic conservation variables' averages, "primitive" variables', "characteristic" vari-

ables', etc.? These issues are briefly revisited in a later section.

II1 tile case of interpolation with piecewise-constant polynomials, if we consider two

neighboring cells, we have two sets of constant values, one to the left of and one

to the right of each cell interface. This resembles the classical Riemann problem.

When higher degree polynomials are chosen, the left and right states are not constant

but a Itiemann Solver may still be used to construct the solution at the instant of

initial contact between the discontinuities. More sophisticated Riemann Solvers may

also be sought -- those that resolve piecewise linear left and right state variations,

etc. In this report, the semi-discrete formulation is utilized to construct higher-order

time-accurate schemes. It may be observed by looking at Eq. (3.6) that if we use a

method-of-lines approach and embed the semi-discrete form in a Runge-Kutta time-

integration scheme, for example, then only the pointwise values of the cell interface

fluxes are required. These can be obtained using a Riemann Solver based on local

values of left and right states.

5) Going back to note (2), we can also add that for smooth data, the magnitude of the

difference between qL and qR behaves with O(Az "+1) where r is the degree of the

interpolating polynomial. Thus, the piecewise polynomial approach is appropriate

for obtaining both smooth solutions and solutions with discontinuities. For smooth

solut!ons,}h e needforusing "good" Riemann Solvers becomes decreasingly important

with increasing degree of polynomial approximation.

6) The procedure for multidimensional flows is similar to that 'for one-dimensional prob-

lems. Interpolation in step (a) must be carried out in a suitable multidimensional way.

The b0un(tary integration_{Eq. (3_-9)Canbe replaced by a suitable quadrature. The

need for a multidimensional Riemann Solver can be obviated by exploiting a suitable

combination of several pointwise (in time and space) Riemann problems.

10
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We now use a set of figures to help visualize the above concepts. Figure 1 simply

outlines the integration limits for the 1-d integral form. Figure 2 shows how an initial

value problem (IVP) for Eq. (2.1) can be replaced by the corresponding one for cell

averages given by Eq. (3.5). Assuming that piecewise constant reconstruction was used,

Figure 3 zooms in on one local Riemann problem (IVP with piecewise constant states) and

Figure 4 helps visualize how the individual Riemann problems, taken together, provide the

means to update the cell averages to the next time level.

In the following sections, we consider the two important steps of the solution procedure

in more detail: 1) the Riemann Solver, and 2) interpolation.

11



_jn+l - ^ ^• _qjn+ (fj.l/2- fj-1/2 ) =0

At Ax

t

I
(n+l) At

nat j-1/2 j+1/2
_X

--=

Figure 1. 1-d integration cell limits
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INITIAL VALUE PROBLEM

qt+fx=0

q (0,x) = q 0 (x) INITIAL VALUE

J q o (x)CELL AVERAGES

Figure 2. IVP for cell averages

13



U
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I

!
x=0

fR= FLUX AT- Xj+l/2, t=0+E

f IS OBTAINED BY USING
A KNOWLEDGE OF DECOMPOSITION
OF INITIAL DISCONTINUITIES

Figure 3. Riemann Solver
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USING RIEMANN SOLVER

=

J

n+l _ n-- 4-

A A

f j+1/2- f j-1/2 =0

At Ax

% / %=/ %_/

^ RIEMANNWE DEFINE f = f

qRIEMANN,

/_ 1 f(qRIEMANN)

....

Figure 4. Using Riemann problem solutions
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Figure 5. Piecewise constant and linear interpolations
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Section 5.0

THE RIEMANN SOLVER

J

The Riemann problem is an initial value problem with piecewise constant initial data

(one set to the left of the origin and the other to the right). It is similar to the "shock

tube problem" of gasdynamics where at t = 0, a diaphragm separates the left state from

the right. In the shock tube, the bursting of the diaphragm brings the left and right states

together. In the mathematical statement, we keep the left and right states separated at

t = 0 and at t > 0, we let the two states interact.

"Riemann Solver" is the name given to the procedure that constructs the solution

to the Riemann problem. The exact solution for the linear wave equation and the guler

equations mentioned in Section 2.0 are well known. The solution comprises a quantitative

knowledge regarding q(x,t) for -oo < x < +oc and t > 0. It turns out that the solution

is self similar in the variable 0 = z/t. Therefore, q(x, t) = qR(O), with the superscript R

denoting the Riemann problem.

The exact, solution to the Riemann problem for the equations in Section 2.0 is made up

of piecewise constant states separated by transitions. Each transition is associated _ith an

eigenvalue of the Jacobian matrix. For the 1-d Euler equations, there are three eigenvalues

u - c, u and v + c, where c is the speed of sound (c = _). The transitions associated

with u -t- c can either be a shock wave or a rarefaction and that associated with u is called

a contact discontinuity. Reference 1 provides formulae for the construction of the exact

solution. In particular, this provides the extents of the piecewise constant states and the

magnitudes of the transitions. From this information, the value of q along the ray 0 = 0

may be determined. We denote this by qR and the corresponding flux as fR = f(qR).

Consider now Eq. (3.6) and the steps (a)-(d) of the solution procedure given in Section

4.0. We assume piecewise constant behavior of dependent variables

q(x) = Clj, Xj_I/2 < X < Xj_t_I/2 (5.1)

This results in local Riemann problems which can be solved to construct

L+1/2 = f%1/2 (5.2)

These numerical fluxes can be substituted into Eq. (3.6) along with a suitable time-

stepping procedure to advance _j.

17



Since for hyperbolic systems it takes finite time for spatially separated locations to

influence each other, for a sufficiently small time step, the Riemann problem from x j_l� 2

will not affect the solution to the Riemann problem at Xj+l/2 and vice-versa. We call

such a time step as AtCFL with the subscript referring to the Courant-Priedrichs-Lewy

stability limit for linear equations.

--n ^

For /_t _ AtCFL, fj÷l/2 : fj+l/2 (5.3)

and therefore the fully discrete form, Eq. (3.5) may also be_ used to advance the solution

qj.

\Vc hm_t n,Ae that, when there are source terms in l-d, for higbo:-ordel ,_,olynomial

interpolatim_., and for muir{dimensional problems, it is still true that two spatially separated

Riemann problems will not influence each other for a sufficiently small interval of time.

However, each Pdemann problem solution is no more self similar under these circumstances

and therefore Eq. (5.3) is not true. In such cases, it is convenient to resort to the method

of lines (semi-discrete) approach.

\Ve now illustrate three properties:

1) Discretization methods such as those described in this section (which use a Riemann

Solver) are "upwind" schemes.

2) Methods based on piecewise constant interpolation are only first-order accurate.

3) First-order accurate upwind schemes are monotonocity preserving.

When a Riemann flux is used as the cell interface flux, the fully discrete integral form

defined in Eq. (3.5) becomes

+! = qj _ __
a_ ^_'1 An

_--_X (gq_l/2 -- g_1/2 ) (5.4)

where fj+l/2 R := fj+l/2. Adding and subtracting fj :from the second term on the right hand

side (RHS), we can rewrite that term to be

fj+,12 - ]j-l12 = (fj+l/2 -- fj) + (fj -/j-,12) (5.5)

The term ]j+lf2 - fj includes the effect of all left-moving waves from the right. The term

fj - ]j-_/2 includes the effect of all right-moving waves from the left. Therefore, Eq. (5.4)

18
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describes a method of updating _j that accounts for the appropriate signal propagation

effects, and hence describes an "upwind" scheme. Note that this was goal (b) identified at

the end of Section 2.

We leave it to the reader to show that when a > 0 in Eq. 2.5,

fj-t-1/2 == aftj, fj--1/2 = attj-1 (5.6)

and therefore, we obtain

At. ,_ _,
_+1 = _y __ a__x(f_j _ uj_l ) (5.7)

Once again, we see that the numerical algorithm defined using piecewise constant polyno-

mials and a Riemann Solver results in an "upwind" scheme.

For piecewise constant and piecewise linear polynomial approximations, the value of

the cell average is also the pointwise value at the midpoint of each cell. Thus, rewriting

Eq. (5.7) as

-  (uy - u-uy+l =uj - i-,) (5.8)

where v = a At/Ax, we see that

It/+1 ----- (1 - u)u}' + uu']_ 1 (5.9)

and therefore the method is monotonicity preserving for the linear wave equation as long

as v <: 1. It is clear that the values u2 +1 will be bounded by the maxima and minima of

uy, and if the uy described a monotone profile, then u2 +1 will preserve such monotonicity.

A Taylor-series analysis of Eq. (5.8) will also show that the finite-difference scheme is

first-order accurate.

As motivation for the following sections, we look at Eq. (5.9) from the following

perspective. For the linear wave equation, the solution u] +1 should be equal to the solution

at t = t" at the foot of the characteristic drawn backwards from x j, t "+1. The RHS of Eq.

(5.9) is equal to that value computed using linear interpolation of the discrete values uy

FI

and u j_ 1 .

We now describe some generalizations that we can use as framework for describing

many schemes including those that are based on "approximate" Riemann Solvers or even

19



those that are not based on Riemann Solvers at all. Extending the second term on the

tlHS of Eq. (5.4) even further along tile lines Shown in Eq. (5.5),

-^ _ - (fj+l/2- f(qL)j+l/2)
fj+l/2 = f(qR)j+l/2 -t- f(qL)j+]/2 (f(qn)j+l/2 R R

2 2
(5.10)

Note the use of superscript R to denote the Riemann problem solution and the subscripts

R and L to denote right and left states. This can be rewritten, after dropping the subscript

j+ 1/2, as

f= f(qI_) + f(qL) _ (df) + -(dr)- (5.11)
2 2

It is shown inRef. 1 how this form cml !-,e used to represent methods using Osher's or Rocks

approximate Riemann Solvers in addition to that using the exact Riemann Solver described

earlier in this section (also known as the Godunov scheme). In fact, Eq. (5.11) can be used

to represent even Split-Flux schemes as well as schemes that do not use Riemann Solvers

at all. For example,

f __ f(qR)-t- f(qL) ¢qR--qL (5.12)
2 2

where ¢ can be a positive constant following the Lax-F=iedrichs scheme or computed as

the absolute value of the maximum local eigenvalue in the manner of the Rusanov scheme.

We have already observed that such simpler approaches become quite useful with higher

degree polynomial interpolation.
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Section 6.0

THE ROLE OF INTERPOLATION

J

Considering the semi-discrete form Eq. (3.6) or (3.9), we observe that even if we are

able to use an exact time-stepping scheme, we must contend with the inaccuracies of the

polynomial approximations used for the spatial discretization. Therefore we now take a

detailed look at piecewise polynomial approximations.

The role of interpolation, in the context used, is to provide a way to reconstruct the

pointwise behavior from a knowledge of the cell average values of the dependent variables.

Considering 1-d for simplicity, we assume that the dependent variables q are described by

the polynomials Pj(a.) in each cell j.

P,(x)=
i----0

(6.1)

where bi are the polynomial coefficients and r is the degree of the interpolating polynomial.

Any polynomial that we choose must satisfy the requirement that

In words, the average of the interpolating polynomial must equal the cell average values

of the dependent variables. Similar relations may be easily obtained for multidimensional

problems.

For the case of a piecewise constant description, it is easy to see that

boj = q.i (6.3)

In this case, the polynomial for each cell j is completely determined from the cell average

value qj for that cell. We have already seen that this results in a first-order accurate

upwind scheme when used with a Riemann Solver.

For polynomial interpolation of degree 1 or higher, we cannot define the polynomial

coefficients in each cell by just considering qj of that cell. We can define the coefficients,

however, by matching the cell averages at the required number of neighboring cells. This

is the method of reconstruction by matching cell averages directly, identified as RM in
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Section 4.0. For example, boj and bid can be defined uniquely by applying Eq. (6.2) to

cells j and j - 1. We can aiso define them by rnatching ctj+i and qj. We therefore have

two choices of piecewise linear polynomials as well as the old choice of piecewise constant

polynomial. These choices are illustrated in Figure 5. For interpolation polynomials that

are not of higher degree than piecewise linear, the cell average values qj are also equal to

q(xj), the mid point value of the dependent variables.

For specific values of qj = q(xd) shown in Figure 5, on the right hand side of the figure,

piecewise constant interpolation is indicated. On the left half Of the figure, both choices of

oiecewise linear interpolation are shown for each cell. It becomes clear timt some choices

may be better than others if we do not want to introduce new extrema via the interpolation

process, in some cells, the choice based on qj, qj-I may be preferable to the one based on

qj+l., q-j, while in other cells, the reverse may be true. At local maxima or minima, either

choice would introduce new extrema, and if that is to be strictly avoided, one must revert

to piecewise constant interpolation locally. Methods that seek to strictly avoid introducing

new extrema along the lines described above, are known as TVD schemes. The advantages

and drawbacks of TVD formulations were described in the introductory section.

The goal is therefore to obtain polynomial interpolation of as high a degree that is

compatible with the desired order of accuracy and simultaneously avoid spurious numer-

ical oscillations caused by extrema introduced via polynomial interpolation. Along the

lines covered for TVD schemes, the approach is to use "smart" interpolation. However, to

achieve uniformly high orders of accuracy, we do not want to hybridize with piecewise con-

stant behavior anywhere. The goal is therefore to construct ENO interpolation by choosing

the best polynomial among the alternatives available of equal degree of interpolation. ENO

interpolation is covered in detail in the next section.

=

=

_z

i
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Section 7.0

ENO INTERPOLATION

While the previously described framework covers both scalar and systems of hyper-

bolic conservation laws, in the remaining subsections we restrict our attention to scalar

equations. The interpolation procedure for systems of equations will be described in a

later section.

In this section, we introduce Hm(x;w), a piecewise polynomial function of x that

interpolates w v_t the points {xj}, i.e.,

Hm(xj;w) = w(xj) (7.1a)

Hm(x; w) - Prn,j+,/2(X;W) for Xj < X <_ Xj+I (7.1b)

where Pro,j+1�2 is a polynomial in x of degree m.

We take Pm,j+a/2 to be the (unique) (m-th)-degree polynomial that interpolates w(x)

at the (m + 1) successive points {xi},im(j) < i < i,,(j) + m, that include xj and xj + 1,

i.e.

ern,j+a/2(xi; w) = w(xi) (7.2a)

for ira(j) < i < ira(j) + m

1-m <_ im(j)-j <_ 0 (7.2b)

Clearly there are exactly rn such polynomials corresponding to the m different choices

of ira(j) subject to Eq. 7.2b. This freedom is used to assign to (xj, xj+_) a stencil of m + 1

points (Eq. 7.2) so that w(x) is "smoothest" in (xi,,(j), xi,,(j)+m) in some asymptotic sensc.

The information about smoothness of w(z) is extracted from a table of divided differ-

ences of w. The latter can be defined recursively by

w[xi] = w(xi) (7.3a)

w[zi," " , zi+k] =

(w[xi+,,...,
xi+ k -- Xi)

23
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The algorithm to evaluate i,,,(j) is recursive. We start by setting

il(j) = j , (7.4a)

i.e. PI,j+I/2 is the first-degree polynomial interpolating w at xj and xj+!. Let us assume

that ,are have already defined ik(j), i.e. Pk,j+_/2 is the (k-th)-degree polynomial inter-

polating t0 at Xik(j),''',Xik(j)+ k. We consider now as candidates for Vk+l,j+l/2 the two

((k + t)-th)-degree polynomials obtained by adding to the above stencil the neighboring

point to the left or the one to the right; this corresponds to setting ik+l(j) = ik(j) -- 1

or ik+l(j) = ik(j), respectively. We choose the one that gives a (k + 1)-th order divided

difference that is smaller in ah_alute value, i.e.

I ik(j)- 1
ik+l(j) /

ik(j)

if Im[xi_(d)_l,...,xik(j)+k][

otherwise.

(7.4b)

In two dimensions, we will adopt a tensor-product approach in this report:

P(x,y) = P_(x)PY(y) (7.5)

In this fashion, we can use the one-dimensional "best" polynomials defined above in order

to construct both one-dimensional and two-dimensional reconstructions. This forms the

subject matter of the next section.

Procedure 1 is a FORTRAN subprogram to determine the best 1-d stencil. It is

invoked repeatedly, in Procedure 2, to compute the best stencil in each direction. We will

see in the next section how such Stencils may be used in 2-d reconstructions.

E
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C
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35

4O

3O

subroutine nint er (ii, du, ni, n)

dimension u(50), ii (50) ,du(4,50)

nonoscillatory interpolation

do 30 m=2,ni

do 35 i=i,n-i

du(m,i)=du(m-l,i+l)-du(m-i, i)

du(m,n)=du(m-l, l)-du(m-l,n)

do 40 i=l,n

iO=ii(i)

ip=iO

if (ip. le. O) ip=ip+n

im=iO-i

if (im. le. O) im=im+n

li (i) =iO+imn (du (m, im) ,du (m, ip) )

continue

continue

return

end

function imn(x,y)

imn=O

if (abs(x) .le. abs (y))imn=-I

return

end

Procedure 1. Nonoscillatory interpolation
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subroutine stencil(u,ii,jj,nx,ny)

dimension u(50,50) ,ii(50,50) ,jj (50,50)

dimension du(4,50),kk(50)

do I0 i=l,nx

do 5 j=l,ny

du(i,j)=u(i,j)

g kk(j)=j

call ninter (kk, du,4,ny)

do 7 j=i,ny

7 jj (i,j)=j-kk(j)

i0 continue

do 20 j=i,ny

do 25 i=l,nx

du(l,i)=u(i,j)

Z5 kk(i) =i

call hinter (kk,du,4,nx)

do 27 i=i,nx

27 ii(i,j)=i-kk(i)

20 continue

return

end

Procedure 2. Best stencils in each direction
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Section 8.0

RECONSTRUCTION BY PRIMITIVE FUNCTION

Given cell averages _ of a piecewise smooth function w

1 _xj+ll2 W(_) d_ , hj --- xj_t_l/2 - xj_l/2
if)J- hj 2i-112

we can immediately evaluate the point-values of the primitive function W(x)

jfx 2:
W(x) = w(y)dy

0

(8.1)

(_.2a)

by
J

w(xj+l/2) = wj
i=io

(s.2b)

Since w(x) .=_ dW(x), we apply interpolation to the pointwise values (Eq. 8.2b) of the

primitive function W(x) and then obtain a pointwise reconstruction by defining

R(x;_) = d H,,(x; W) (8.3)

While there are several ways to reconstruct pointwise behavior in 2-d, we present one

specific method here based on the primitive function and a tensor-product approach.

where

The two-dimensional cell average t_ of a piecewise smooth function w is defined to be

1 j yk+,/2 [x/+,/2
w(_,rl) d_dr 1 , (8.4a)

?_)jk- Ajk tSk-ll_ .'xj-ll_

Ajk = (xj+ll2 - xj-ll2)(Yk+ll2 -- Yk-ll2) (8.4b)

In the above, we have assumed a Cartesian grid. We can immediately evaluate the point

values of the primitive function W(x, y).

W(x,y) = w(_,rl)d_drl (8.5a)
0 0
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by

W(zj+,/2, yk+l/2) =

k j

ik=ko ij=jo

(s.5b)

°2 W(x, y), we apply interpolation to the pointwise values (Eq. 8.5b) ofSince w(x, y) - OxOy

the primitive function W(x, y) and then obtain a pointwise reconstruction by defining

9 2

R(x, y; _ oxoH (x, ; W) (8.6)

We note .that the above procedures do not require uniformity of the mesh but only that

the mesh is Cartesian and not curvilinear. The non-oscillatory nature of the reconstruction

follows primarily from the nonoscillatory nature of the interpolation. We also note that

in the above description, w represents the dependent variable or other quantity being

interpolated.

Procedure 3 presents a FORTRAN subprogram to develop a table of coefficients to be

used to efficiently compute two-dimensional reconstruction at the center of a cell. Proce-

dure 4 presents a subprogram to perform 2-d reconstructions using the stencils generated

in Procedures 1 and 2. Such reconstruction is necessary, for example, to compare numer-

ical results for pointwise values at the center of the cell with analytic solutions. Similar

reconstruction is required to evaluate qL and qR at Gaussian quadrature points along cell

boundaries.
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3O

subroutine rctble

common/rc/dlprc (4,4)

al=O. 5

do 20 k=i,4

zk=k+al-i.

do 20 j=l,4

pr=1.

sm=O.

do 15 m=O ,4

if(m.eq.j)goto15

anw=zk-m

pr=pr*anw/float (j-m)

sm=sm+l./anw

continue

dlprc (j, k) =pr* sm

write (8, *) 'dlprc'

do 30 j=l,4

write(8,*) j, (dlprc (j ,k) ,k=1,4)

continue

return

end

Procedure 3. Constructing table of reconstruction coe_cients
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subroutine rcnst(u,uu,nx,ny)

common/rc/dlprc(4,4)

common/d/a,b,&lmdx,almdy

dimension u(50,50),uu(50,50)

dimension wgs(50,50)

dimension ii(50,50),jj(50,50)

call stencil(u,ii,jj,nx,ny)

do I0 i=l,nx

do i0 j=i,ny

kj=jj(i,j)+l

jbg= jrkj

do iO l=i,2

sm=O.

smu=O.

do 5 jlg=l,4

jv=jbg+jlg

if(jv.gt.ny)jv=jv-ny

if(jv.lt, l)jv=jv+ny

smu=smu+u(i,jv)

5 sm=sm+smu*dlprc(jlg,kj)

I0 wgs(i,j)=sm

do 20 i=l,nx

do 20 j=l,ny

ki=ii(i,j)+i

ibg=i-ki

sm=O.

smu=O.

do 15 ilg=i,4

iv=ibg+ilg

if(iv.gt.nx)iv=iv-nx

if(iv.it, l)iv=iv+nx

smu=smu+wgs (iv, j )

15 sm=sm+smu*dlprc(ilg,ki)

uu(i,j)=sm

20 continue

return

end

Procedure 4. Two-dimensional tensor-product reconstruction
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Section 9.0

SYSTEMS OF EQUATIONS

It is easy to construct ENO formulations for systemsof equations suchas the Euler

equations. Often it sufficesto treat eachdependentvariable in tile fashion describedearlier.

For best results in situations involving moving discontinuities, it preferable to treat each

wavefield using the scalar ENO formulation. A few more implementation details aregiven
here tor convenience.

First we consider 1-d problems. For systemsof equations, we chooseone stencil for

eachwave field in each cell. Let R be the matrix of right-eigenvectora (the columns of R

are right-eigenvectors rP). Let L be the matrix of left-eigenvectors (the rows of L are the

left-elgenvectors IP). For convenience in what follows, let RL = I, where r is the identity

matrix. The individual left and right eigenvectors can always be suitably normalized to

achieve this identity. In order to decide which stencil to use for wave-field p, we compare the

dot products of Ip with the two choices for the divided differences of the vector of dependent

variables. For each wave field, the comparison is therefore of two scalar quantities.

For the one-dimensional Euler equations, there will be three stencils defined in each

cell, one for each local characteristic_ variable defined by Lj •@j. Using these three stencils,

it is possible to reconstruct three sets of vector valued states to the left and right of each

cell interface. Denote the p-th set defined at the left face of cell j by w p+ and denote
j--1/2

the p-th set defined at the right face of cell j by w p- Let w/_i/2 and w7+i/2 be thej+1/2"
values to be used in the Pdemann Solver. We construct these from the individual sets

corresponding to each wave field using

3

E w,÷-- j--l/2) rj
p----1

3

-- j+l/2) rj

p----1

(9.1)

For the 2-d Euler equations, we can apply the same procedure direction by direction

since we are using a tensor-product approach in this report.
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Section 10.0

SOLUTION PROCEDURE

For most solutions presentedin this report, the fourth-order accurate Runge-Kutta

method wasused to advancethe solution in time using the semi-discreteapproachespre-

sentedin previoussections.Somesolutionsfor the 1-d scalarwaveequation wereobtained
by other methodssuchasreconstructionby deconvolution, fully-discrete formulations, etc.,

but are presentedhere for completeness.

For 2-d problems, the cell boundary integrals of Eq. (3.9) wereevaluatedusing Gaus-
sian quadrature. A two point quadrature was used for each of the four sides for the

fomth-order accurate results. Tables of interpolation coefficients were computed, simi-

lar to the presentation in Subroutine Rctble of Procedure 3 given in an earlier section

to simplify the evaluation of first derivatives along the x and y directions at Gaussian

quadrature points on cell boundaries. Another computational efficiency was achieved by

computing the best stencil only once for each time step and using these for all stages of

the Runge-Kutta scheme.

For the examples to be presented, only the fixed and periodic boundary conditions

were required. The FORTRAN procedures given earlier assume periodic behavior but

can be easily modified for non-periodic cases. The procedures also assumed that no grid

stretching was used in either coordinate direction. This specialization was useful for all the

results presented but can be generalized so that the method can be applied to Cartesian

grids with direction-by-direction stretching,
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Section 11.0

ONE-DIMENSIONAL EXAMPLES

We now present several one-dimensional examples to illustrate various aspects of ENO

schemes.

Polynomial Interpolation

Figure 6 illustrates the advantages of ENO polynomial interpolation. The highly os-

cillatory curve in Figure 6a was obtained by standard 6-th degree piecewise polynomial

interpolation -- in every cell, the same relative stencil was used independent of the data.

The circle symbt, ls are the discrete values sampled to obtain the piecewise polynomial

interpolation. The other curve passing through the circles is the analytically defined func-

tion based on which the discrete values were.obtained. In contrast, Figure 6b shows the

piecewise polynomial interpolation obtained using the 1-d ENO reconstruction method

described earlier in this report.

Wave Equation -- Sine wave

In the next example, the linear wave equation is solved on a very coarse grid with only

6 intervals. A periodic boundary condition is used. Figures 7a-d compare the numerical

solution obtained with various orders of accuracy with the analytic solution after the sine

wave has moved one cycle through the grid. In these figures, the circular symbol denotes

the cell average value of the dependent variable. The analytic solution is an exact sine

wave. The piecewise polynomial interpolation is also shown in each cell. The left and right

values at each cell interface are connected by a vertical line. The improvement in accuracy

with higher-order ENO formulations is clearly seen. Figure 8 portrays a composite of such

individual results.

Polynomial Interpolation

The previous example used smooth initial data and therefore was not really a good il-

lustration of the ENO properties of the scheme. Now, we present results for the linear wave

equation but with the initial data corresponding to the first example. Figures 9a-d show

how increasingly higher-order ENO formulations improve accuracy without introducing

spurious numerical oscillations.
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Damping Random Oscillations

In the next example, we start with sine wave initial data but add random perturbations

to it (with maximum magnitude 0.1). Figure 10a shows the basic sine wave profile along

with the initial data., with the square symbols denoting the cell center values. Figure 10b

shows the numerical solution obtained with a 4-th order accurate ENO formulation after

1 cycle through the mesh assuming periodic boundary conditions. Notice how the highly

oscillatory behavior of the initial data has been damped out but the smooth mean profile

is propagated without error.

Shock Tube -- Sod's Problem

The next example uses the l-d Euler equations with initial data proposed by Sod. Fig-

ures 11a-c show a comparison of the numerical solution (symbols) with the exact solution

(solid line) for density. Figures 12a-c show a comparison of the velocity profiles. Note the

improvement in accuracy from 1st to 2nd order accuracy and the marginal improvement

beyond 2nd order -- in this case, because of the relative lack of higher gradients except

near the transition points. In this example, characteristic variable interpolation was used.
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Figure 6a. Piecewise polynomial interpolation
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Figure 6b. Sixth-order non-oscillatory polynomial interpolation
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Figure 7b. TVD second-order accuracy
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Figure 7d. ENO sixth-order accuracy
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Figure 9c. ENO third-order accuracy
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Figure lla. Sod problem, density, first-order scheme

0

NINT = 2

2

X

Figure 1lb. Sod problem, density, ENO second-order scheme
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Figure 12a. Sod problem, velocity, first-order scheme

43



U

1 2

NINT =

o3
t p -_

-0.5 0.1 0.3 0.5
i

-0.3 -0.1

X

Figure 12b. Sod problem, velocity, ENO second-order scheme

l 1 2

r

|

=

ii

NINT = 4

U

3

o.s -0.3 6 1 n'_ o.a o.5- _ . _.

X

Figure 12c. Sod problem, velocity, ENO fourth-order scheme
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Section 12.0

TWO-DIMENSIONAL EXAMPLES

We now present examples in two spatial dimensions.

Rotated Square Hat Problem

The two-dimensional scalar wave equation was solved on a uniform grid (20 x 20) with

the wave speeds equal to unity in both directions. The exact solution corresponds to a

translating initial data along the diagonal from lower left to upper right corner of the grid.

Periodic boundary conditions were assumed in all four directions. The initial profile was a

square hat, rctated by 45°; inside the square region, the dependent variables were assigned

a value of unity and outside the region it was set to zero. Contour plots are shown for

10 snapshots at time-intervals of 10 steps in Figure 13. This example demonstrates the

appropriateness of the 2-d interpolation procedure used.

Turbulence Amplification in Shock-Wave Interactions

A preliminary investigation was carried out to evaluate the applicability of the ENO

formulation presented here to the problem of turbulence amplification in shock-wave in-

teractions. The basic physical phenomena were described in Ref. 16 along with numerical

results using a shock fitting procedure. The goal here was to perform an assessment of

the feasibility of using shock-capturing schemes instead. The problem selected was the

refreaction of a vorticity wave striking a Math 8 shock at a 30 degree angle of incidence

as illustrated in Fig. 2 of Ref. 16 (except that the incident wave is a vorticity wave rather

than an acoustic one).

For the calculations presented in this report, upstream and downstream conditions

(with respect to the shock wave) were chosen such that the shock wave is stationary. The

flow velocity on the upstream side (right hand side) of the shock wave is from right to

left with a Mach number of 8. The flow on the downstream side is subsonic. A vorticity

perturbation is added to the supersonic side. The perturbation velocity components are

denoted in Figure 14 as u _ and v I. The geometry parameters are defined such that an

entire period of the perturbation velocity profile fits the region between y,,,a_ and ymi,,.

The upstream flow is held constant for the duration of the computations. The downstream

flow feels the effect of the vorticity perturbations and over a period of time, these effects

propagate to the left of the shock wave. A uniform grid in both the coordinate directions
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wasassumed.Periodic boundary conditions wereimposedconnecting the upper and lower

boundaries. The flow field washeld fixed at the unperturbed subsonicconditions at the left

boundary. The computational grid used 101points in the x direction and 61 points in the

y direction. The upstream values of pressure and density were used as reference conditions

to nondimensionalize all appropriate quantities. In order to specify the magnitude of

the vorticity perturbation, u.,.e.f (see Fig. 14) was chosen to be the upstream velocity's

magnitude and the intensity selector e was chosen to be 0.001.

Three sets of results are now presented in Figs. 15-17. Each set comprizes a) pressure

contours in the range 74.46 to 74.56, b) vorticity contours, and c) vorticity profiles along

the horizontal direction for every horizontal grid line. Figs. 15a-e display results at a value

of nondimensior, al time, r, of 0.094. Figs. 16a-c are for r = 0.153 and Figs. 17a-c are

for v = 0.2. The smoothness of the contours in the contour plots demonstrates the utility

of the ENO shock capturing scheme for this problem. The vorticity contours lie between

the maximum and minimum values displayed in the figures presenting vorticity profiles.

The shock wave location is at x = 0.0. The profiles show the amplification of vorticity

occurring downstream of the Shock wave.

:=

J

r

The results shown in Fig. 17c are redrawn in Fig. 17d in a condensed form. To create

Fig. 17d, the maximum absolute value of vorticity along each vertical grid line at each x

location was computed and plotted as a function of x. Based on the harmonic behavior in

the y direction displayed in Fig. 17c, this approach is a reasonable alternative to computing

and plotting the Fourier coefficients at each x location. If this plot is compared with Fig. 4

of Ref. 16, the good agreement between the two results becomes evident. The two results,

however, use different scaling. The region of non-zero vorticity in both results is clearly

seen to extend 0.5 units along the axial direction downstream of the shock position. The

shape of the numerical profile on the downstream side of the shock wave is almost identical.

The present shock-captured results also show vorticity through the numerical shock layer

and on the upstream side of the shock wave: The values of vorticity inside the numerical

shock layer cannot be usefully interpreted.

m

In the above computations, the ENO interpolation procedure was applied to the char-

acteristic variables and not the conservation variables. The next two sets of figures illus-

trate the need for this implementation. These results were obtained using initial conditions

(upstream and downstream) chosen so that the shock wave is moving to the right with

Ms = 8.0 (Mach number computed using shock velocity and upstream speed of sound).

The perturbations were set to zero. Without the presence of any two-dimensional effects,
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the sameaxial profiles were obtained at every vertical location (solution independent of

y). Figs. 18a, 19a and 20a portray density, pressure and u-velocity profiles when conser-

vative variable interpolation is used and Figs. 18b, 19b and 20b illustrate the numerical

behavior when characteristic variable interpolation is used. The marked low frequency

oscillations shown in Figs. 18a, 19a, 20a are not unexpected to researchers familiar with

ENO formulations. The use of characteristic variables greatly reduces, but not eliminates,

Such undesirable behavior. It is yet to be determined whether such numerical effects may

be obstacles to the application of shock-capturing ENO schemes, such as the formulation

presented in this report, to high resolution applications such as turbulence amplification

in shock-wave interactions when the shocks are moving with respect to the computational

grid.

In summary, it has been shown that an appropriately applied ENO shock-capturing

scheme can be used to study shock-wave turbulence interactions. Some issues related to

capturing high Mach number moving shock wave have also been raised. This researcher

is confident that recent advances such as "subcell resolution" techniques (Ref. 14) and

evolving improvements to and variations of ENO schemes will resolve such problems. It

must also be repeated here that the above study represents only preliminary work in

applying a specific type of ENO formulation to shock-wave turbulence interaction problems

and is therefore not definitive.
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Section 13.0

CONCLUDING REMARKS

The general framework of ENO formulations for systems of hyperbolic equations have

been presented along with a specific implementation based on reconstruction by primitive

function, Runge-Kutta time integration and a tensor-product approach to multidimen-

sional problems. Some FORTRAN procedures have been provided to facilitate imple-

mentation of ENO schemes by other interested researchers. Several examples have been

included to illustrate interesting properties of the new algorithms.

The general framework is very rich with potential. ENO schemes can be constructed

based on the integral form or the differential form of hyperbolic equations. We have

presented the former in this report. Reconstruction can be based on RD, RP or RM.

We have presented RP here. Multidimensional interpolation possibilities are endless. We

have presented here a specific method based on a tensor-product approach that is very

economical and can be used for all problems that need only Cartesian meshes. We have

presented here the semi-discrete formulation and have used a method-of-lines approach

by using the fourth-order accurate Runge-Kutta method for advancing the discretized

equation in time. Other fully discrete approaches are possible. While the basic theme

presented in this report is "smart interpolation," we have only covered the simplest types

of implementations. We have only alluded to advances such as "subcell resolution."

If we try to set ENO schemes in perspective, the present state of their development

is similar to where TVD schemes were in 1982. The basic TVD algorithms existed then.

CFD codes that exploited them came soon thereafter. We are similarly poised with ENO

schemes now. Time will tell what the real impact of very highly accurate ENO formulations

will be: whether it will be more efficient computations, more accurate solutions, or being

able to compute fluid physics problems that were hitherto beyond reach.

While several individuals contribute to the advancement of the state-of-the-art in any

field, this researcher would like to identify here a few who have had a great impact on

the material presented in this report. Bram van Leer was a pioneer in the field of up-

wind schemes of accuracy greater than first order. He looked at the problem of high-order

schemes and the r0ie of interpolation from a very elegant intuitive geometric perspective.

Ami Harten developed the mathematical framework of TVD schemes to put such ideas in

an analytic framework. Phil Roe and Stan Osher contributed much by providing simpler

approximate solutions to the Riemann problem. Most of the work of this researcher in
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recent years has been influenced directly or indirectly by Harten and Osher. Harten ex-

tended the TVD ideas to develop the ENO framework and together with Osher and several

colleagues, including this researcher, has played a key role in developing what promises to

be the algorithmic framework of the next five years for a wide range of CFD problems.

63



Section 14.0

REFERENCES

[1] S.R. Chakravarthy and S.Osher,"Computing With High-ResolutionUpwind Schemes

for Hyperbolic Equations," Lectures in Applied Mathematics, Volume 22, 1985, pp. 57-

86.

[2] Sukumar R. Chakravarthy, "Development of Upwind Schemes for the Euler Equa-

tions," NASA Contractor Report 4043, January 1987.

[3] S. R. Chakravarthy and K.-Y. Szema, "Euler Solver for Three-Dimensional Supersonic

Flows with Subsonic Pockets," Journal of Aircraft, Volume 24, Number 2, February

1987, pp. 73-83.

[4] K.-Y. Szema, S.R. Chakravarthy, W.T. Riba, J. Byerly, and H.S. Dresser, "Multi-

Zone Euler Marching Technique for Flow Over Single and Multi-body Configurations,"

AIAA Paper No. 87-0592, January 1987.

[5] Kuo-Yen Szema and Sukumar Chakravarthy, "A User Guide for the EMTAC-MZ CFD

Code", NASA Contractor Report 4283, 1990.

[6] A. Harten, "High Resolution Schemes for Hyperbolic Conservation Laws," Journal of

Computational Physics, Vol. 49, 1983, pp. 357-393.

=

[7] S. R. Chakravarthy and S. Osher, "A New Class of High Accuracy TVD Schemes for

Hyperbolic Conservation Laws," AIAA Paper 85-0363, January 1985.

[sj s. R. Chakravarthy, "The Versatility and Reliability of Euler Solvers Based on High-

Accuracy TVD Formulations," AIAA Paper No. 86-0243, January 1986.

[9] S.R Chakravarthy, K.-Y. Szema, and J.W. Haney, "Unified Nose-to-Tail Computa-

tional Method for Hypersonic Vehicle Applications," AIAA Paper No. 88-2564, June

1988.

64



[10] A. Harten, "On High-Order Accurate Interpolation for Non-Oscillatory

Shock-Capturing Schemes,"MRC Technical Summary Report No. 2829, June 1985,
University of Wisconsin, Mathematics ResearchCenter.

[11] A. Harten and S. Osher, "Uniformly High-Order Accurate Non-Oscillatory Schemes,

I," MRC TechnicalSummaryReport No. 2823,May 1985.

[12] A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy, "Some Results on Uni-

formly High-Order AccurateEssentiallyNon-Oscillatory Schemes,"Journal of Applied

Numerical Mathematics, Vol. 2, 1986, pp. 347-377.

[13] S. R. Chakravarthy, A. Harten, and S. Osher, "Essentially Non-Oscillatory

Shock-Capturing Schemes of Arbitrarily-High Accuracy," AIAA Paper 86-0339, Jan-

uary 1986.

[14] A. Harten, "ENO Schemes with Subcell Resolution," ICASE Report 87-56, NASA

Langley Research Center, August 1987.

[15] (3. A. Sod, "A Survey of Several Finite Difference Methods for Systems of Nonlinear

Hyperbolic Conservation Laws," Journal of Computational Physics, Vol. 27, 1978,

pp. 1-31.

[16] T .A. Zang, M.Y. Hussaini, and D.M. Bushnell, "Numerical Computations of Tur-

bulence Amplification in Shock-Wave Interactions," AIAA Journal, Vol. 22, No. 1,

January 1984, pp. 13-21.

65





Report Documentation Page

I. Report No. i 2 Government Accession No.

NASA CR-4285

I
4. Title and Subtitle

Some Aspects of Essentially Nonoscillatory (ENO)
Formulations for the Euler Equations

7. Author(s)

Sukumar R. Chakravarthy

9. Pefformi_ Organ_at_n Name and Address

Rockwell International Science Center
P. O. Box 1085

Thousand Oaks, CA 91360

12. S_n_ring Agency Name and Addre_

NASA Langley Research Center
Hampton, VA 23665-5225

3. Recip_ent's Catalog No

5. Report Date

May 1990

6. Performing Organization Code

8, Performing Organization Report No.

10. Work Unil No.

505-60-01-02

11. Contract or Grant No,

NAS1-17492

13 Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Cooe

15. Supolemen_w Not_

Langley Technical Monitor: David H. Rudy
Final Report (Part 3)

16. Ab_racl

this reportdescribesan essentiallynonoscillatory(ENO) formulationforhyperbolicsystems of
:onservationlaws. ENO approaches are based on "smart interpolation"to avoid spuriousnumerical

)scillations.ENO schemes are a superset ofTotal VariationDiminishing (TVD) schemes. In the recent

)ast,TVI) formulationswere used to constructshock-capturingfinite-differencemethods. At extremum

)ointsofthe solution,TVD schemes automaticallyreduce tobeing first-orderaccuratediscretizations
ocallywhile away from extrema, they can be constructedtobe ofhigher-orderaccuracy. The new

!ramework helps constructessentiallynon-oscillatoryfinite-differencemethods without recourse tolocal

reductionsofaccuracytofirstorder. Thus arbitrarilyhigh ordersofaccuracycan be obtained.The basic

_enera]ideasofthe new approach can be specializedin severalways and thisreportdescribesone specific
mplementation based on a)the integralform ofthe conservationlaws,b)reconstructionbased on the

,rimitivefunctions,c)extensiontomultipledimensions in a tensorproductfashion,d) Runge-Kutta time
ntegration.The resultingmethod isfourth-orderaccurateintime and space,and isapplicabletouniform

:artesiangrids.The constructionofsuch schemes forscalarequationsand systems in one and two space

Limensionsisdescribedalong with severalexamples which illustrateinterestingaspectsofthe new
_pproach.

17. Key Words (Suggested by Author(s))

Upwind Schemes
Total-Variation-Diminishing Schemes
Euler equations

18. Distr_ut_n Statement

Unclassified - Unlimited
Subject Category 34

19. S_urity ClmmH. (of _ ra_n)

Unclassified

_. S_ur_ C_miL (of _i= _ge)

Unclassified

21. No. of

72

22. Price

A04

NASA FORM 1(126 OCT K
l_O

For _le by the National Technic&] Information Service, Spring_%Id, Vn'ginia 22161-2171

I




